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A~trae t - -Th is  paper describes the derivation of  an equation set for the multiphase flow of small 
polydispersed liquid droplets in a continuous gas-phase consisting of either a pure vapour (of the same 
chemical species as the liquid droplets) or a mixture of pure vapour and an inert gas. Some difficulties 
of  previous formulations are resolved by more judicious definitions of the interphase transfer terms. The 
analysis includes a consistent model to represent the surface energy and entropy of the liquid droplets. 
Surface effects are normally neglected but must be included if consistency is to be maintained with droplet 
growth models in which the droplet temperature depends on its radius due to the effects of  capillarity. 
A derivation of  the equation for the rate of  entropy creation due to departures from equilibrium is also 
presented. Entropy production in non-nucleating flows can be represented by precisely four terms, three 
of which are associated individually with the interphase transfer of  mass, momentum and energy. The 
fourth term represents the entropy change due to the homogeneous nucleation of liquid droplets from 
the vapour and is in exact agreement with the results of  classical nucleation theory. The form of the 
entropy creation equation allows an interpretation using the methods of  linear irreversible thermodyn- 
amics and indicates that some mathematical models of  droplet growth in common use, derived on an 
informal basis, may not be physically realistic in certain circumstances. 
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I N T R O D U C T I O N  

The specification of a basic equation set for modelling multiphase flows with phase change is a 
difficult problem which has not yet been resolved satisfactorily. Because of the sheer variety of flow 
types, phases and components possible, the derivation of a physically consistent mathematical 
framework for the analysis of a general multiphase flow is a very daunting task. The present paper 
has a much more modest aim, however, in attempting a rigorous formulation describing just one 
type of multiphase flow, namely the flow of small, spherical liquid droplets of various sizes in a 
continuous gas-phase consisting of either a pure vapour (of the same chemical species as the liquid 
droplets) or a mixture of a pure vapour and an inert gas. Despite the apparent restrictions, the 
equations are applicable to a wide range of engineering flow problems including, in particular, those 
involving the homogeneous nucleation of a supersaturated vapour. 

Equation sets for gas~lroplet multiphase flow have appeared in the literature before, two 
well-known examples being those of Marble (1969) and Jackson & Davidson (1983). These provide 
excellent starting points, but the fact that neither is fully comprehensive and both contain 
inconsistencies testifies to the difficulty in formally establishing the basic framework. Indeed, a 
familiarity with the literature on condensing and evaporating flows soon reveals a need for a more 
rigorous approach at the fundamental level of mathematical modelling. This paper is an attempt 
to resolve some of the difficulties of previous treatments. 

The first part of the paper is concerned with a careful derivation of the conservation equations 
of mass, momentum and energy. Although this is familiar territory, the division of the equations 
for the mixture into separate equations for the gas and liquid phases is not a straightforward 
problem because of the difficulty of specifying precisely the terms representing the interphase 
transfer of momentum and energy in the presence of condensation or evaporation. By adopting 
definitions slightly modified from the usual to describe this transport of momentum and energy, 
the gas and liquid phase equations become symmetrical and the resulting, more elegant, form aids 
physical interpretation. 
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The most important modification, however, is the inclusion of a thermodynamically consistent 
model for the surface energy and entropy of the liquid droplets. The surface terms are invariably 
neglected in formulating the conservation equations because it is widely believed that their effects 
are insignificant. Nevertheless, when calculating the temperature of very small condensing or 
evaporating droplets, the effect of capillarity is always included because, in these circumstances, 
it can be shown that the deviation of the droplet temperature from the saturation temperature is 
strongly influenced by the effects of surface tension (Gyarmathy 1963). The two assumptions are 
not consistent, however, and this becomes evident when deriving the equation for the creation of 
entropy due to departures from equilibrium. Indeed, a correct form of this equation, with or 
without the inclusion of surface effects, has never appeared in the literature. Without any 
mathematical approximations en route, it is shown below that the production of entropy can be 
represented by precisely four terms. Three of these are associated individually with the interphase 
transfer of mass, heat and momentum. The fourth term represents the entropy change associated 
with the nucleation of liquid droplets from the vapour and is in exact agreement with the results 
of classical homogeneous nucleation theory. Such a mathematically elegant and physically 
significant form can only be obtained by the correct inclusion of the liquid surface energy and 
entropy. 

The form of the entropy production equation makes possible an interpretation using the methods 
of irreversible thermodynamics. Thus, the conjugate fluxes and thermodynamic forces can be 
identified and the phenomenological equations established for linear departures from equilibrium. 
These equations provide a formal setting for the theory of droplet growth and indicate that some 
mathematical models in common use, derived on an informal basis, may not be physically realistic 
in certain situations. 

In deriving the equations, the assumptions and approximations are stated without qualification 
in order that the main issues are not obscured by less important detail. Most readers will be aware 
of the range of validity of the equations and, for those who are not, an exhaustive discussion can 
be found in Gyarmathy (1982). Some approximations can quite easily be relaxed at the cost of 
greater algebraic complexity but, from a practical point of view, it is probably easier to add 
additional terms to the equations as presented below, rather than remove unwanted terms from 
a more general, but less comprehensible, analysis. 

BASIC R E L A T I O N S H I P S  

The analysis applies to the unsteady compressible flow of a gas~troplet mixture in one, two or 
three space dimensions. The continuous phase consists (in the general case) of a mixture of an inert 
gas (subscript G) and a condensible vapour (subscript v) and is referred to throughout as the 
gas-phase. The liquid phases are discontinuous and consist of a polydispersed population of 
spherical droplets. It is assumed that the volume fraction occupied by the droplets is small and 
hence that droplet~lroplet interactions do not occur. The effects of viscosity, thermal conductivity 
and diffusion in the gas-phase are neglected except in the specification of the interphase transfer 
processes. The resulting equations are therefore not applicable as they stand to boundary layer and 
other flows dominated by viscosity. 

Consider a mixture of inert gas, condensible vapour and liquid droplets and let the mass of inert 
gas per unit mass of mixture be g. The mass of vapour plus liquid per unit mass of mixture is 
therefore (1 - g ) .  The total wetness fraction y is now defined as the mass of liquid per unit mass 
of vapour plus liquid (not mix ture) .  It therefore follows that the mass of vapour per unit mass of 
mixture is ( 1 - g ) ( 1 - y )  and the total mass of liquid per unit mass of mixture is ( 1 - g ) y .  
Obviously, 

g + (1 --g)(1 - -y )  + (1 - - g ) y  = 1. [1] 

The above definitions of g and y are very convenient. In the particular case when velocity slip 
between the gas and liquid phases can be neglected, elemental fluid particles retain their identity 
in that the total mass of vapour plus liquid contained in the particle remains constant even though 
condensation or evaporation may occur. For this special condition, it follows that g remains 
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constant along a particle path line in unsteady flow or along a streamline in steady flow. Another 
advantage is that, for a pure vapour, g = 0 and y is synonymous with the conventional definition 
of the wetness fraction. In passing, note that the specific humidity (defined for mixtures of  low 
vapour content as the ratio of the mass of vapour to the mass of  inert gas) is given by 
(1 --g)(1 - - y ) / g .  

For convenience, the continuous spectrum of droplet sizes is discretized into an arbitrary number 
of  droplet groups. Group-i  consists of ni spherical liquid droplets per unit mass of vapour plus 
liquid (not mix ture) ,  all of radius ri, liquid density p~ and mass m~ = 4nr~pff3. The contribution to 
the wetness fraction by group-i droplets is, 

Yi = nimi, [2] 

and the total wetness fraction is therefore, 

Y = Z Y,, [31 

where the summation sign indicates summation over all droplet groups. 
If the partial densities of  the inert gas and vapour components are Pc and p~ respectively, then 

the density of the gas-phase is, 

P = Pc + Pv, [4] 

and the mixture density Pm is given by, 

1 = g + ( 1 - - g ) ( 1 - - y ) + ~ ( 1 - - g ) y ,  [5] 

Pm P Pi 

Often, the volume occupied by the liquid phases is very small and the final term of  [5] may be 
neglected. 

Assuming inert gas and vapour to behave as perfect gases with partial pressures Pc and Pv, 

p v = p v R ~ T ,  

Pc = PG Rc T, [6] 

where Rc and Rv are the specific gas constants of the inert gas and vapour components and T is 
the temperature of the gas-phase. By Dalton's law, the pressure of  the gas-phase p = Pv + Pc is given 
by, 

p = p R T ,  [7] 

where, 

g R c  + (1 - g ) ( l  - y)Rv  
g = [8] 

g + ( 1 - g ) ( 1 - y )  ' 

is the specific gas constant of the gas-phase and varies from point to point in the flowfield. 
The specific internal energy of the gas-phase e is the sum of  the specific internal energies of  its 

components ec and ev. Thus, 

gec + (1 --g)(1 --y)ev 
e = [9] 

g + ( 1 - - g ) ( 1 - - y )  

Changes in e at constant g and y are therefore given by, 

de = Cv dT, [10] 

where the isochoric specific heat capacity of the gas-phase cv is given by, 

ge m + (I - g ) ( l  - y)evv 
c , =  [ll] 

g + ( l  - -g ) ( l  - - y )  

Similarly, the specific enthalpy of the gas-phase h --- e + p i p  = e + R T  is given by, 

ghc + (1 - g)(1 - y)hv 
h = , [121 

g + ( 1 - - g ) ( 1  - y )  
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where hG = eG + PG/PG = eG + RG T and hv = ev + Pv/Pv = ev + Rv T. Changes in h at constant g and 
y are given by, 

dh = cp dT, [13] 

where the isobaric specific heat capacity of the gas-phase c v is given by, 

gCpG + (1 -- g)(1 -- y)Cpv [141 Cp z 
g + ( l - - g ) ( l - - y )  

Finally, the specific entropy of the gas-phase s is given by, 

gsG + (1 -- g)(1 -- y)sv 
s = [ 1 5 1  

g + ( 1 - - g ) ( l  - -y )  

where s G and sv are the specific entropies of the inert gas and vapour components evaluated at the 
gas-phase temperature T and the partial pressures PG and p~. 

T H E R M O D Y N A M I C S  OF A LIQ U ID  D R O P L E T  

In deriving expressions for the energy and entropy of the liquid phases, it is important to include 
the droplet surface terms in order to obtain a consistent set of equations. Apart from being a matter 
of principle there are also important practical implications. For large droplets with low surface to 
volume ratios, numerical errors resulting from neglect of these terms are normally small. However, 
for self-nucleated flows containing large concentrations of very small droplets, numerical errors can 
be significant, particularly when calculating entropy production rates. Thus, although the rate of 
phase-change itself may be computed with acceptable accuracy, the error in the entropy production 
rate may, in some cases, be comparable with the magnitude of the effect itself. 

Although a number of authors have attempted to include the surface terms in the flow 
conservation equations [for example, see appendix A2 of Gyarmathy (1982)] a correct derivation 
has not yet appeared in the literature. The following is a more rigorous formulation based on the 
surface thermodynamics of Gibbs, a clear exposition of which can be found in Ono & Kondo 
(1960). 

In the Gibbs formulation of the thermodynamics of curved surfaces, the real droplet-gas system 
(with rapidly but, nevertheless, continuously varying properties in the interface region) is replaced 
by a model consisting of a spherical droplet separated from the gas by a hypothetical dividing 
surface of zero thickness. Both droplet and gas are assumed to have uniform properties right up 
to the dividing surface where a discontinuous change takes place. The position of the dividing 
surface is arbitrary, but it is usually convenient to place the surface at the position where the total 
mass of the model system equals the total mass of the real system. This is called the equi-molecular 
position of the dividing surface. However, although the total mass of the system is conserved by 
this choice, the total energy and entropy are not. The difference between the total energy of the 
real system and that of the model system (i.e. the sum of the liquid and gas contributions) is called 
the surface energy and is specifically associated with the dividing surface. The surface entropy is 
defined similarly. 

It is thus assumed that the energy Ei and entropy Si of a group-/liquid droplet can be represented 
as the sum of a bulk term (subscript b) and a surface term (subscript s), 

E i = Ebi -k Esi ,  

S~ = Sbi + S~i. [16] 

These expressions can be written, 

E, = 4 ~r ~ pieb~ + 4rcr ~ e~i , 

S, = 4 7tr~ piSbi + 47zr~ ss,, [171 

where ebi and Sbi are the bulk specific energy and entropy (i.e. per unit mass) and e~ and ss~ are the 
energy and entropy per unit surface area. The energy and entropy per unit mass of droplet, e~ and 
&, are therefore given by, 
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3e~i 
e i = ebi q-  piri 

3Ssi 
S i = Sbi ~ p i r i  [18] 

In the present analysis, it is assumed that the bulk properties (particularly the temperature) are 
uniform throughout the droplet (even well away from the surface region). This approximation may 
be questionable for large droplets but can be relaxed (at the expense of  greater complexity) without 
affecting the basic structure of the equations. [The conditions under which it is permissible to 
assume uniform droplet temperature are analysed in detail by Gyarmathy (1982)] The condition 
for mechanical equilibrium of the droplet in a gas at pressure p is, 

20-~ 
p~=p  + - - ,  [19] 

ri 

where p~ is the internal pressure of  the droplet and O-~ is the surface tension or surface free energy 
per unit area. Equation [19] is assumed to hold even in non-equilibrium situations. 

It is important to note that eb~ and sb~ must be evaluated at the droplet temperature T, and i n t e r n a l  

pressure p~ and that the latter may be very large for small droplets. 
As shown in texts on surface thermodynamics, the surface energy and entropy e~ and ss~ can be 

expressed in terms of  the surface f r e e  energy (or surface tension) O-~ as, 

do-i 
esi = O-i-  T~ d T  ~ , 

do- i 

Ssi = d T  i • [20] 

Formally, a i is defined by the relationship O-i = (~Esi/OAi)ss , ,  where Ag is the surface area of a group-i 
droplet, ai is a function of temperature and, in some cases perhaps, of droplet radius (for example 
in the very early stages of nucleation when the droplet is little more than a large cluster of 
molecules). The latter possibility is not included here, however. (Note that, in some publications, 
the surface f r e e  energy ag has been confused with the surface energy esi.) 

Changes in the specific bulk entropy and energy are related by the familiar relationship, 

T i dSbi = debi + p~ d(l/Pi), [21 ] 

where deb~ = c~ dT~, ci being the bulk specific heat capacity at constant volume of  the liquid. The 
corresponding relationship between the surface entropy and energy can be derived using the 
methods of  surface thermodynamics as, 

Ti dssi = des,. [22] 

[22] implies that the droplet-gas interface has been located at the equi-molecular position so that 
the mass associated with the surface is zero. 

Equations [20] and [22] assume that the surface and bulk liquid are always in thermodynamic 
equilibrium and hence the "surface temperature" Tsi is always equal to the bulk temperature T~. 
Readers unfamiliar with the concept of "surface temperature" should note that it is defined by the 
relationship Tsi = (~?E~i/~3S~)A, and is therefore a well-specified quantity. It is unnecessary to 
associate the usual physical attributes of  temperature with T~. 

The change in droplet entropy per unit mass ds~ must now be related to the change in droplet 
energy per unit mass de i. This can be achieved by differentiating [18] and substituting [21] and [22]. 
Equations [19] and [20] are also used and give, after some manipulation, 

O-i dmi  
T~ ds~ = de~ + p d( 1/pi) + - -  - - ,  [23] 

piri mi 

where m~ is the mass of  a group-i droplet. Note that the pressure p in [23] is the local gas-phase 
pressure and n o t  the internal pressure of the droplet p~. The droplet enthalpy per unit mass is now 
d e f i n e d  by the relation, 
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hi = ei + P ,  
Pi 

[24] 

where p represents the gas-phase pressure. Differentiation and substitution of [23] results in, 

cii dmi 
T, dsi = dh, - dp + _ _  _ _  [251 

Pi piri mi 

CONSERVATION OF DROPLETS 

Consider a control volume of volume V bounded by a closed surface S. A small volume 6 V within 
the control volume contains total mass pm 6 V and mass pm(1 - -g)6  V of vapour  plus liquid. The 
number of group-/droplets  in 6 V is thus Pm (1 - g)ni6 V. Let the nucleation rate of  group-i droplets 
per unit mass of  vapour plus liquid in 6 V be J,. 

For the control volume, the conservation of group-i droplets can be written, 

{;;; } ;; ff; t3t p m ( 1 - g ) n i d V  + P m ( 1 - g ) n i u i ' d A =  p m ( 1 - g ) J ,  dV,  [26] 

where u~ is the vectorial velocity of group-i droplets and 6A is a vectorial element of area on the 
control surface with direction equivalent to an outward pointing normal vector. The triple integrals 
represent integration over the control volume V and the double integrals represent integration over 
the closed control surface S, Applying Gauss 's  theorem and allowing 6 V to become infinitesimally 
small (while still containing many droplets), gives the differential form, 

~t {pm(l -- g)ni} + V" {p,,(1 - g)niu ~ } = pm(l -- g)Ji. [27] 

Note that a separate equation must be written for each droplet group. Equations valid for a pure 
vapour  can be obtained by setting g = 0. 

A special case arises when the relative velocity between the gas and liquid phases is negligible 
as in many self-nucleated flows where the droplets are very small. As shown in the next section, 
g then remains constant along a path line and, using [35] below, 

Dni 
- J , ,  [28] 

Dt 

where D / D t - - t 3 / d t  + fi-V is the substantive derivative following a fluid particle and fi is the 
common velocity of  the phases. Thus, in the absence of nucleation, the ni remain constant along 
the fluid path lines. (This is why it is generally much more convenient to work in terms of n~, defined 
as the number per unit mass of vapour  plus liquid rather than the more common "number  density" 
defined as the number per unit volume.) 

MASS C O N T I N U I T Y  E Q U A T I O N S  

In the elemental volume 6V, the mass of inert gas is gpm6V, the mass of vapour is 
pm(I-g)(1-y)fV and the mass of  group-i liquid droplets is pro(1-g)yi6V. The continuity 
equation for the mixture as a whole can therefore be written in control volume form as, 

;ff ;f ;; ~t p m d V +  Pm[g +(1  - g ) ( 1  - -y)]u"  dA + ~ pm(l -- g)yiui" dA = 0, [29] 

where u is now the velocity of  the gas-phase and Z represents summation over all the droplet 
groups. Applying Gauss 's  theorem and allowing 6 V  to become infinitesimally small (while still 
containing many droplets), gives the differential form, 

~P~ + V '  {Pm[g + (1 - g ) ( l  - y)]u} + ~ V" {pm(l - g)yiul} = 0. [30] 
0t 

As before, the equations for a pure vapour  carrier can be obtained by setting g = 0. The species 
continuity equation for the inert gas, derived similarly, is, 
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0 
0t (Ping) + V'(pmgU) = 0. [31] 

The mass continuity equation for droplet group-i is obtained by multiplying the droplet 
conservation equation [27] by me, 

dt {pm(1 -- g)Y~} + V" {Pm (l -- g)yeu,} = pm(1 -- g)(nethe + miJ~), [32] 

where the= Orne/Ot + u~. Vm e is the condensation rate on a group-/ droplet. With the possible 
exception of condensation on very small, freshly nucleated droplets containing only a few 
molecules, th e is a well-defined quantity. The continuity equation for the gas-phase is obtained by 
subtracting from [30] the summation over all groups of [32]. Thus, 

c3t { P m [ g + ( 1 - - g ) ( l - - Y ) ] } + V ' { P m [ g + ( l - - g ) ( 1 - y ) ] u } = - - p m ( 1 - g ) ~ ( n e r h e + m J e ) .  [33] 

The species continuity equation for the vapour component alone may then be obtained by 
subtracting [31] from [33]. 

For zero relative velocity between the gas and liquid phases, the mixture continuity equation [30] 
becomes, 

0pro 
t~---t- + V "(Pro fi) = 0, [34] 

where fi is the common velocity of the phases. Equation [31] for the inert gas component reduces 
to, 

Dg 
- o ,  [351 

Dt 

showing that the mass fraction g remains constant along a fluid particle path line. For droplet 
group-i, [32] becomes, 

Dy, 
Dt = (nith, + m,Je), [36] 

and for the vapour component alone, [33] becomes, 

D(1 - y) = - Z  (nethi + meJi). [37] 
Dt 

MOMENTUM EQUATIONS 

In deriving the momentum equations, care must be taken in specifying the force acting on the 
control surface when droplet surface tension is included. Consider a group-/droplet intersected by 
the control surface as shown in figure 1. The internal pressure of the droplet is (p + 2#/ri) and 
this acts normal to the control surface within the droplet. However, the excess pressure 2~i/r~ 
integrated over the relevant area is just balanced by the surface tension force acting on the droplet 
perimeter where it is cut by the control surface. Hence, the total force acting on the control surface 
is simply obtained by integrating the gas-phase pressure over the whole surface including that 
intersected by the droplets. 

Neglecting viscous shear forces, the momentum equation for the mixture as a whole is, 

 {fff zfff } ff c3t P m [ g + ( 1 - g ) ( l - y ) ] u d V +  pm(l-g)y,u~dV + p d A  

+ffPm[g +(1 --g)(1 --y)]u(u .dA)+ Y. ffpm(l --g)yeui(ul "dA)=0 .  [38] 

The differential form is obtained by applying Gauss's theorem, allowing 6 V to become infinitesi- 
mally small and introducing the continuity equation [31]-[33]. The result is, 
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Figure 1. Droplets intersected by the control surface. 

Du~ Vp 
[ g + ( l  - g ) ( 1 - y ) ]  ~-~u + ( i -  g ) ~ y i ~ i  + ~mm = ( 1 - - g l ~ n i r i t i ( u - - u i )  , [39] 

where D/Dt = O/Ot + u.  V is the substantive derivative associated with a gas-phase fluid particle 
and D/Dti = c3/c3t + uj. V is the substantive derivative associated with the group-/liquid droplets. 
In deriving [39], it has been assumed that freshly nucleated droplets travel with the gas-phase velocity. 

The derivation of the momentum equations for the separated gas and liquid phases has caused 
some confusion in previous publications. The problem involves the specification of the momentum 
exchange between a droplet and the gas-phase when phase-change is occurring simultaneously with 
the presence of velocity slip. A discussion can be found in appendix 1, where it is shown that a 
well-defined formulation of the momentum equation for group-/droplets  is, 

Y i ~ .  + = n,fi + n/rh,(fi,- u i )  , [40] 

where (fl - m~Vp/pz) represents the net rate of momentum transfer from the gas-phase to a group-/ 
droplet measured in a co-ordinate system moving at an arbitrary velocity fi~. In the absence of 
phase-change, fi is similar to the force on a solid particle and (assuming the Basset and virtual mass 
effects are negligible) can usually be approximated by a suitable expression for the steady-state drag 
force. If phase-change is present, however, the form of f~ may change to include the effects (not 
necessarily additive) of net condensation or evaporation. Because of the definition of f~, [40] is valid 
irrespective of the sign of the interphase mass transfer rate rh~ and it is unnecessary to differentiate 
between cases of net positive or negative phase-change in the manner of Jackson & Davidson (1983). 
(In passing, it should also be noted that the term representing the force on the droplet due to the 
pressure gradient is incorrectly specified in the Jackson & Davidson paper.) 

The momentum equation for the gas-phase is obtained by summing [40] multiplied by (1 - g )  
over all droplet groups and subtracting from [39] to give, 

[g + ( l - g ) ( l - y ) ]  ~ +  =(l--g)~t--n,f~+n,rh~(u-fi~)], [41] 

where p is the gas-phase density. 
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Although fi~ is an arbitrary velocity, a useful simplification and ordering of the energy and 
entropy equations results from the choice fi~ = (u + ul)/2, a definition which is adopted herewith. 
Physically, this choice implies that the interphase momentum transfer is measured with respect to 
a co-ordinate system moving at the mean velocity of the two phases and it is this symmetrical 
viewpoint of the momentum exchange which is responsible for later simplifications. 

For negligible gas-liquid relative velocity, [39] for the mixture becomes, 

Dfi Vp 
- -  + - -  = 0 .  [421 
Dt Pm 

AS discussed by Marble (1969), care must be exercised when taking the limit ( u -  ul )~0 in the 
equations for the individual phases because the f~ remain finite. The correct procedure is to write 
[40] as, 

(o0 
Yi ~ -  + = nif~, [43] 

where fi is the common velocity of the phases and this equation defines the f~ for inclusion in the 
gas-phase momentum equation [41] which then becomes, 

[g+(1--g)( l - -y)]  ~-~+ = - - ( l - g ) ~ n i f ~ .  [44] 

ENERGY EQUATIONS 

In deriving the energy equation for the mixture, the effects of heat conduction, viscosity 
and diffusion in the gas-phase are neglected. As before, we consider a control volume of volume 
V and bounding surface area S. In order to specify the work done by the pressure forces in 
transporting the flow through the control volume, we imagine, following Jackson & Davidson 
(1983), the control surface to be sub-divided into sub-surfaces passing each phase alone. Thus, each 
element of control surface area 6 A is composed of area elements passing the gas and liquid phases 
separately, 

A = c5 A c + ~ 6 A i . [ 4 5 ]  

As shown by Jackson & Davidson, the continuity relationships then require, 

Pm[g + (1 --y)(1 --g)] 
6A G = ~A, 

P 

P m (  1 --g)Yi 
6 A~ = 6 A. [46] 

Pi 

The energy equation for the mixture in control volume form can therefore be written, 

+ p.~[g+(1--g)(1--y)] e + ~  u . d A +  pm(l-g)y~ e~+~ u~.dA 

+ffPm[g+(l--g)(1--y)]pu'dA+~ffPm(1--g)Y'Pu, d A = o p  P, [471 

It should be noted that e is the specific internal energy of the gas-phase and ei is the energy 
per unit mass of the group-i droplets including the surface energy. Introducing the definitions of 
the specific enthalpies of the gas-phase (h = e + p/p) and of the group-/droplets (hi--- ei + P/Pi) 
gives, 

IJMF 21 2--D 
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Ot {fffpm[g+(l--g)(l - y)](h + 2 )  dV + ~ fffpm(l-g)yi(hi+2)dg } - ,)J,J[f[~dVct 

+ p ~ [ g + ( i - - g ) ( 1 - - y ) ]  h + ~  u . d A +  p , , ( I - g ) y ,  hi+ u , . d A = 0 .  [48] 

The differential form is obtained by applying Gauss's theorem, allowing 6 V to become infinitesi- 
mally small and introducing the continuity equations [31]-[33]. The result is, 

°( °( 2) g~-~ h G + ~  + ( l - - g ) ( l - - y ) ~  h~+ + ( l - g ) Z )  ~ ,  hi+ pm~t 

= ( 1 - - g ) ~ ( n i r h i + m ~ J i )  - hi+ . [49] 

It should be noted that, if the vapour and inert gas components behave as perfect gases, 
g DhG/Dt + ( 1 - g ) ( 1 - y ) D h ~ / D t  = [ g  + ( 1 - g ) ( 1 - y ) ] c p D T / D t ,  where Cp is defined by [14]. 

The thermodynamic form of the energy equation is obtained by subtracting from [49] the scalar 
product of u and [41], and the scalar product of (1 - g)u~ and [40] for each droplet group. Adopting 
the definition fi~ = (u + u~)/2 gives, 

I-DhG 1 DP]+(I--g)(l--y)[~[ 
gLbs p u t j  

1 D p ]  _ FDh, I DpJ 

= (1 -- g) ~ [(n,rh, + m~Ji)(h ~ - hi) + nil i "(u - ui) ]. [5o] 

One of the advantages of this particular choice for fi~ is now evident as the terms on the right hand 
side of [50] naturally separate into two parts. The first represents the rate at which "latent heat" 
is released at the droplet surface due to phase-change and the second represents the rate of 
dissipation of kinetic energy by the "effective drag force" fi. It is only for this particular choice 
of fil that such a separation occurs. 

The energy equation for a liquid droplet is complicated by, among other things, the inclusion 
of the surface energy terms and a correct formulation has not appeared previously in the literature. 
A derivation is presented in appendix 2, where it is shown that a well-specified formulation of the 
energy equation for group-/droplets is, 

I Dh~ I D p  ] yi ~-t7 j p , ~  = n ~ m , ( h v - h i ) + n i q , ,  [51] 

where qi is the heat transfer rate from the gas-phase to a group-/droplet.  (The precise definition 
of q~ can be found in appendix 2.) 

The energy equation for the gas-phase is obtained by summing [51] over all droplet groups, 
multiplying by (1 - g )  and subtracting from [50] for the mixture to give, 

[-Dh G 1 D p ]  [-Dhv 1 D p ]  

gkb5 pb5 p• 
= (1 -- g) ~ [--n~qi + rnJ,(h~ - hi) + n,f~. (u - ul)]. [52] 

For zero relative velocity between the gas and liquid phases, the energy equation for the mixture 
becomes, 

DhG Dh,. _ Dh, D f~2"~ 1 ~p 
g ~ - + ( 1 - g ) ( 1 - - y ) ~ - + ( 1 - - g ) L y ,  b - ) -+D-  ~ )  Pm 8't 

and the thermodynamic form is, 

DhG Dhv Dh, 1 Dp 
g - ~ - + ( l - g ) ( l - Y ) ~ - + ( 1 - g ) ~ , Y ~ D t  p m D t  

= ( l - g ) ~ ( n i r h , + m J , ) ( h , - h , ) ,  [53] 

-- (1 -- g) ~ (n,rh, + miJ,)(h , - hi). [541 
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The energy equation for group-i droplets takes the form, 

Yi ~ pi t J  

and [52] for the gas-phase becomes, 

[-DhG 

+ niqi, 

Dp FDhv 1 Dp 
p ~ - y ) L . ~  p ~ (1  ~ g~ ~ [ ~ niqi  ~ miJ i~hv  ~ hi~]l 

[55] 

[56] 

E N T R O P Y P R O D U C T I O N  

The conservation equations of momentum and energy derived in the previous sections reveal a 
pleasing form and symmetry which aids physical interpretation and has been lacking in other 
formulations. A comparison of the present equations with those of Marble (1969) and Jackson & 
Davidson (1983), for example, shows that by careful definition of the interphase transfer terms f~ 
and qt, it has been possible to eradicate some of the small terms which otherwise appear in the 
equations tending to obscure their significance. 

It will also be observed that the incorporation of the droplet surface energy has not altered the 
basic form of the equations. The surface energy is contained within the droplet specific enthalpy 
term ht and only appears in the energy equations. The analysis has demonstrated, however, that 
the correct form is hi = et +P/Pt rather than hi = et +PJPt as might otherwise have been suspected. 

Small though these alterations to the theory may appear, they have a very significant effect in 
the derivation and interpretation of the equation for the rate of production of entropy due to 
departures from equilibrium. A formally correct version of this equation has never appeared in the 
literature, all previous derivations being plagued with small but unwanted terms which destroy the 
expected symmetry and sometimes run counter to physical intuition. 

Let the rate of production of entropy per unit mass of  mixture be ~o. The entropy production 
equation in control volume form is then, 

 ta{fffPmEg+(l-g)(l-y)]sdV+Zfff pm(l-g)ytstdv } ffPm  d V  = 

+ffpm[g+(1-g)(l-y)]su'dA+•ffpm(1-g)ytstu,'dA, [57] 

where s is the specific entropy of the gas-phase and st is the entropy per unit mass of a group-i 
droplet including the surface entropy. The differential form is obtained by applying Gauss's theorem, 
allowing 6 V to become infinitesimally small and introducing the continuity equations [31]-[33]. The 
result is, 

Ds G Ds~ -- Dst 
~o = g ~ -  +(1 - g ) ( l  - y ) ~ -  +(1 - g) Lyt~)-~i - (1 - g ) 2 ( r l t r h i + m t J t ) ( S v - S i ) .  [58] 

The changes in specific entropy of the inert gas and vapour components are described by the 
thermodynamic relationships, 

DSG DhG 1 DpG T Dsv Dhv 1 Dpv [59] 
T D t  - Dt PG Dt ' Dt = Dt p~ Dt ' 

which together can be written, 

  IDP] I6ol T r Dso Dsvl rDho l 
L g - - ~ - + ( 1 - - g ) ( l - - Y ) D - / ] : g  L ~ p 

The change in specific entropy of a group-i droplet is given by [25], 

Ds i Dhi 1 Dp + ai rhi. [6 l] 
Ti D-tt - Dt i pt Dti pirimt 

Substituting [60] and [61] in [58] and combining with the energy equations [51] and [52] gives, 
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n,fi" (u - -  ui) [(h,, - 
+ T + miJi hi) ( s , - & ) ] } .  [62] 

The terms associated with mass transfer and nucleation can be simplified as shown in appendix 
3. Equation [62] then becomes, 

Rv ~ (Rv Ti -~- R v  Tt ( S v -  Sbi) "q" R, T ~ j ,  [631 

where Sb~ and hbi = eb~ + Pi/P~ are the specific entropy and enthalpy of the bulk liquid composing 
a group-/droplet.  Both terms must be evaluated at the droplet temperature T, and internal pressure 
Pi. Equation [63] involves no approximation whatsoever and follows directly from the original 
mathematical model of the multiphase flow. However, with the very minor approximation 
discussed in appendix 3, the equation takes the more significant form, 

f niqi VT - T[] r p, ] nifi • (u - ul) 47rr{a,Ji'~ 
(1 - g ) Z  J + n,m, lOge J + [64] 

where Pv is the partial pressure of the vapour in the gas-phase and p~ (Ti, ri) is the saturation pressure 
(corrected for the effects of surface curvature) at temperature T, for a droplet of radius r i. p~(Ti, r~) 
is related to the "flat surface" saturation pressure p~(T~) by the Kelvin Helmholtz equation 
ps( T~, ri) = p~( T~)exp(2a~/ p, Rv T~r~). 

There are several noteworthy features about the entropy production rate equation. Excluding 
for the moment the term involving nucleation, it is evident that the creation of entropy is associated 
with the three interphase exchange processes of mass, heat and momentum transfer. This 
conclusion is not, of course, new but it is the first time in which an equation has been derived 
whereby the three contributions appear as three clearly identifiable, separate terms. Equation [63] 
follows directly from the basic mathematical model and there are no approximations en route. That 
such a formulation is possible hinges on the precise definitions of q~ and f~ and the correct inclusion 
of the surface energy and entropy terms. 

The term representing the entropy generation rate due to nucleation is notable because it is 
always negative and hence appears to contradict the second law of thermodynamics. It will be 
recalled, however, that in classical nucleation theory, the initial growth of a liquid cluster to the 
critical radius (at constant temperature) is associated with a work input of magnitude 47~r~ai/3. For 
nucleation at the rate of J~ per unit mass of vapour plus liquid, this implies a dissipation or entropy 
production rate per unit mass of mixture of, 

co (1 --g)[-4rcr~aiJi 1 e 7 : -  [ " I651 
The result from classical nucleation theory is therefore in exact agreement with [63]. 

LINEAR IRREVERSIBLE THERMODYNAMICS 

It is instructive to apply the formalism of linear irreversible thermodynamics to a gas droplet 
multiphase flow. Linearizing [64] and omitting the nucleation term gives, 

R,~ =(1 - g )  ~" (R, Ti +n fh  i + , [66] 

Adopting the terminology of irreversible thermodynamics, [66] allows the identification of three 
pairs of conjugate fluxes and thermodynamic forces which characterize the departures from 
equilibrium. These are: (i) a heat flux q,/RvT, associated with a force ( T - T i ) / T ;  (ii) a mass 

. . . . . .  / ~ 
flux m, associated with a force [p,.-  p~(T,, r,)]/pv; and (m) a momentum flux fi,~/R, T associated 
with a force ( u -  ui)/x/R , T. 

The condition for flow equilibrium corresponds to zero entropy production. From [66] this can 
only occur if, for every droplet group, T~ = T (equality of temperature), p~(T,, r~) = p, (equality of 
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chemical potential) and ui = u (zero relative velocity). The condition for mechanical equilibrium 
p~ = p + 2~i/r i has been assumed throughout the analysis and hence there is no entropy production 
term associated with departures from this type of equilibrium. 

The following shorthand notation is now adopted: 

qi j =  f~ 

Pv -Ps(Ti ,  r~) T - T~ u --u~ 
A p -  , A T =  Au=  [67] 

p~ T ' x / ~  T" 

For convenience the subscript i on the fluxes and thermodynamic forces has been dropped, it being 
understood that the resulting equations apply to droplets of group-/with radius r~. 

In the theory of irreversible thermodynamics, a linear relation may exist between each flux and 
each thermodynamic force. It will be noted, however, that the components of the conjugate pairs 
(J,,, Ap) and (Jq, AT) are scalar quantities, while those of the pair (J,, Au) are vectors. According 
to the Curie symmetry principle (de Groot & Mazur 1962) fluxes and thermodynamic forces of 
different tensorial character do not couple. The resulting linear dependence can therefore be 
represented by the three equations, 

J,,,= L,,,mAp + LmqAT 

Jq = Lqm Ap + Zqq m T 

J .  = L,u Au [68] 

where L ..... Lmq, Lqm, Lqq and L,u are scalar quantities known as phenomenological coefficients. 
Onsager's reciprocal theorem then demands the equality Lmq = Lqm. 

The phenomenological coefficients cannot be deduced by thermodynamic reasoning alone and 
must be obtained from suitable models based on continuum fluid mechanics and the kinetic theory 
of gases. The literature on this subject is now very large and the reader is referred to Gyarmathy 
(1982) for an extremely comprehensive review and synthesis of the published theories. It should 
be appreciated, however, that most mathematical models of droplet growth have been derived 
rather informally and sometimes do not fit comfortably into the formal framework of [68]. Even 
Gyarmathy's impressive synthesis concentrates exclusively on three terms which, given the insight 
provided by the theory of irreversible thermodynamics, can be identified as Lmm, Lqu and Lu,. These 
are, indeed, the dominating terms for many cases of quasi-steady droplet growth or evaporation 
particularly where an inert carrier gas is present. However, even in the simplest case of steady-state 
droplet growth in a stationary atmosphere of pure vapour, it is found that Ap is effectively zero 
and hence that J,, is controlled by the term Lmq AT irrespective of the magnitude of the coefficient 
Lm,,. In cases of transient droplet growth, of course, the off-diagonal terms may totally dominate. 

Any complete theory should therefore examine the mathematical form and physical interpret- 
ation of all the phenomenological coefficients. A start has been made in this direction by a number 
of publications [see, for example, Young (1991)] but more work is required before satisfactory 
models are available covering the very wide range of conditions experienced by droplets in 
multiphase fluid flowfields. 

CONCLUSIONS 

The derivation of an equation set for the flow of small polydispersed spherical droplets in a pure 
vapour with or without an inert gas component has been described. Some difficulties of previous 
formulations have been resolved by the adoption of more suitable definitions of the interphase 
transfer terms and the analysis includes a consistent model to represent the surface energy and 
entropy of the liquid droplets. All these modifications are essential to obtain a correct formulation 
of the equation for the creation of entropy due to departures from equilibrium. The form of this 
equation allows an interpretation in terms of linear irreversible thermodynamics and the fluxes and 
thermodynamic forces of Onsager's theory are clearly identifiable. The resulting phenomenological 
equations give the correct form for the interphase transfer processes and show that some informally 
derived droplet growth models may require modification. 



188 J.B. YOUNG 

R E F E R E N C E S  

BROCK, J. R. 1964 Free-molecule drag on evaporating and condensing spheres. J. Phys. Chem. 68, 
2862-2864. 

DE GROOT, S. R. & MAZUR, P. 1962 Non-equilibrium Thermodynamics, Chaps 4 and 6. 
North-Holland,  Amsterdam. 

GYARMATH¥, G. 1963 On the growth rate of small liquid droplets in a supersaturated atmosphere, 
Z. Angew. Math. Phys. 14, 280-293 (in German). 

GYARMATHV, G. 1982 The spherical droplet in gaseous carrier streams: review and synthesis. In 
Handbook of Chemistry and Physics, 62nd Edn, pp. 99-279. McGraw-Hill ,  New York. 

JACKSON, R. & DAVIDSON, B. J. 1983 An equation set for non-equilibrium two-phase flow, and an 
analysis of some aspects of choking, acoustic propagation and losses in low pressure wet steam. 
Int. J. Multiphase Flow 9, 491-510. 

MARBLE, F. E. 1969 Some gas~lynamic problems in the flow of condensing vapours. Acta 
Astronautica 14, 585-614. 

MAXEY, M. R. & RILEY, J. J. 1983 Equation of motion for a small rigid sphere in a non-uniform 
flow. Phys. Fluids 26, 883 889. 

ONO, S. & KONDO, S. 1960 Molecular theory of surface tension in liquids. In Encyclopaedia ~/ 
Physics, Vol. lO, Structure of Liquids (Edited by FL~GGE, S.), pp. 134-157. Springer, Berlin. 

SCHUCHTING, H. 1979 Boundary-layer Theory, 7th Edn. McGraw-Hill ,  New York. 
YOUNG, J. B. 1991 The condensation and evaporation of liquid droplets in a pure vapour at 

arbitrary Knudsen number. Int. J. Heat Mass Transfer 34, 1649-1661. 

A P P E N D I X  1 

Interphase Momentum Transfer 

The equation of motion of a spherical droplet in the absence of phase-change has been discussed, 
for example, by Maxey & Riley (1983). In most cases of practical interest, the main force acting 
on the droplet is due to steady-state drag. Other terms, such as the Basset and virtual mass forces, 
are usually small and are generally neglected. In the present analysis, the force due to the pressure 
gradient is included explicitly for the sake of symmetry with the gas-phase momentum equation. 
It gives rise to the term Vp/pi in [40]. 

Even in the absence of phase-change, the steady-state drag force is difficult to specify because 
the range of droplet radii of practical interest is very large. Thus, an expression for the drag force 
is often required to be valid from the continuum flow limit, through the slip and transition regimes 
to the other extreme of free molecule flow. Such a multi-range equation has been proposed by 
Gyarmathy (1982), [125], and the reader is referred to this very comprehensive publication for all 
details of the deviation and assumptions involved. 

When phase-change is occurring simultaneously, the situation is much more complex. The 
approach adopted by Marble (1969), Gyarmathy (1982) and Jackson & Davidson (1983) is to 
assume that the momentum transferred from the gas-phase to the droplet consists of two additive 
contributions, one associated with the steady-state drag (written as if phase-change were absent) 
and the other associated with the net interphase mass transfer. Jackson & Davidson make the 
assumption that the net mass transferred carries the momentum associated with the velocity of the 
phase from which it originates (i.e. the gas-phase for net condensation and the liquid-phase for net 
evaporation). Gyarmathy and Marble qualify this assumption by associating the interphase mass 
transfer always with the liquid-phase velocity except in the case of net condensation in free molecule 
flow. 

In practice, however, the transfer of momentum due to viscous drag and interphase mass transfer 
are inextricably linked and their total effect cannot be represented by a simple linear combination. 
That this is so, can easily be appreciated by reference to a laminar boundary layer flow over a flat 
plate with and without suction. In the case without suction, the surface shear stress is given, for 
zero pressure gradient, by the Blasius solution. The solution to the problem with suction can be 
found in Schlichting (1979, p. 383). In the asymptotic limit, the surface shear stress equals -pv0u~,  
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where u~ is the free stream velocity and v0 is the normal velocity at the surface. The solution, in 
this limiting case, bears no relation to the Blasius result. 

Nevertheless, it is advantageous to write the separate droplet and gas-phase momentum 
equations unambiguously in terms of a quantity, which, although difficult to specify, is at least 
well-defined. 

Consider, therefore, the conservation of momentum applied to a group-i droplet over a time 
interval 6t during which its mass changes from rn~ to m~ + 6m~ and its velocity from u~ to ui + 6ui. 
f~ is defined to be the total net rate of momentum transfer from the gas-phase to the droplet, 
measured in a co-ordinate frame moving at an arbitrary velocity fii. In the absence of phase-change, 
f~ is independent of the frame of  reference but for simultaneous net phase-change its form may need 
to be adjusted depending on the choice of fii. The conservation of momentum is expressed by, 

( m  i -k- 6 m i ) ( u  i -~- O u l )  - -  m i u  i = f~ft + Omil l i ,  [A1] 

which, in the limit as 6t tends to zero, becomes, 

Oul 
m , ~ / / =  f~ + rhi(fi i -- u,) [A2] 

Defining f~ = fl + m~Vp/p~ (where the final term represents the negative of the force on the droplet 
due to the imposed pressure gradient) gives the result, 

g n  i - -  _ [Dt~ + -- f~ + rh~(fii u0. [A3] 

It is shown in the paper that a judicious choice for fi~ is fil = (u + uO/2. 
For free molecule drag with simultaneous phase-change, an expression for fj can be derived from 

the kinetic theory of gases and is limited only by the difficulty of specifying the various 
accomodation coefficients (Brock 1964). The specification of f~ for continuum flow is more difficult 
and must await the publication of  the analysis of flow around a sphere with suction and blowing. 
Often, however, condensation and evaporation rates are so low that f~ can be approximated by the 
conventional viscous drag force without incurring severe penalties. 

A P P E N D I X  2 

Interphase Energy Transfer 

The derivation of the energy equation for a droplet requires careful attention to detail. During 
a time interval 6t, the increase in energy of  the droplet is, 

U 2 

where ei is the energy per unit mass of  the droplet including the contribution from the surface energy. 
From [A2], the work done on the droplet by the momentum transfer from the gas-phase in time 
6t is, 

ui '[f~ 6t + 6mi(fii- ul)] = mi6(u2/2), [B2] 

and the work done on the droplet by the gas-phase due to the change in droplet volume is, 

- p 6  (mj/pi) = - mi6 (p /p,) - (p /p~)6m~ + (m~/p~)bp. [B3] 

6E is now defined as the remaining energy transfer from the gas-phase to the droplet in time 6t 
in a co-ordinate system translating with the droplet. This is a well-specified quantity which, in 
principle at least, can be evaluated by the methods of kinetic theory. 6E is represented as the sum 
of a convective vapour enthalpy flux defined by h,(T, pv)6m~ (hv = ev +Pv/Pv) and a heat flux q~ft, 

6E = hv(pv, T)Omi + q~6t. [B4] 

[B4] defines qi as the heat transfer rate from the gas-phase to the droplet. Being non-condensible, 
the inert gas, if present, makes no contribution to the convective term but it can have a strong effect 
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on qi. In the absolute co-ordinate system, the total energy transfer to the droplet from the gas-phase 
in time 6t is therefore, 

[h~(p~, T) + u~ /216mi + qi6t. [B5] 

Combining the expressions [BI]-[B3] and [B5] results in an equation representing the conserva- 
tion of energy for the droplet, 

mi(6hi - 6p/pi) = (hv - hi)6rni + qi6t, [B6] 

where hi = ei + P/Pi. Note that all the kinetic energy terms cancel, a result which is in keeping with 
the physical principle that a change in droplet velocity can only be effected by a transfer of kinetic 
energy and not by an exchange of thermal energy. Dividing by 6t and taking the limit 6t ~ 0  gives 
the energy equation for a group-/droplet, 

I-Dhi l Dp 1 mi - -  = rhi(h~- hi) + qi. [B7] 
LDti P i ~ i  

The specification of the interphase heat transfer rate qi is discussed at length by Gyarmathy 
(1982). For small relative velocity, qi is dominated by conduction heat transfer through the 
gas-phase surrounding the droplet. At higher relative velocities, however, the heat transfer 
coefficient is dependent on the relative Reynolds number. The Knudsen number also has an 
important influence. A multi-range expression for qi has been proposed by Gyarmathy (1982), [123], 
and the reader is referred to this publication for further details. 

A P P E N D I X  3 

Simplification of [62] 
First consider the coefficient of nirhi in [62]. By the substitution of [18]-[20] and [24], this can 

be written, 

[(h~.-hi)~ (Sv--Si)+~Ti l (hv--hbi) T~ [C1] 

where hbi = ebi + P/Pi is the specific enthalpy and Sb, is the specific entropy of the bulk liquid. Both 
these quantities are evaluated at droplet temperature Ti and droplet internal pressure 
Pi = P + 2a/ri. Further simplification results from the expansion, 

(by - hbi) - -  T , ( sv  - sbi) - -  [ h v ( T ,  p v )  - h v ( T i ,  Pv)] - Ti [ s , , (T ,  Pv) - s v ( T i ,  pv)] 

+ [/~v(ri,pv)-pi(Ti,pi)], [C2] 

where i~v(Ti,pv)= hv(Ti ,p~)-  Tisv(Ti,pv) is the chemical potential of the vapour component at 
temperature Ti and partial pressure Pv and i~i(Ti,pi ) = hbi(Ti,pi)-TiSbi(Ti,pi) is the chemical 
potential of the liquid at temperature T, and internal pressure p,. According to the 
Kelvin Helmholtz relation, a droplet of radius ri and temperature 7",. would be in equilibrium with 
vapour at temperature Ti and pressure Pe = p~(Ti, ri) = p,(Ti)exp(2~r/piR~ T~ri), where p~(Ti) is the 
saturated vapour pressure at temperature Ti, Hence, izi(Ti,pi)= p~(Ti,p~). Assuming the vapour 
to behave as a perfect gas, [C2] can therefore be written, 

(hv--hb')--Ti(s~--Sbi)=CP"(T--Ti)--cp~Til°g~(~,) +RVTil°gj\p~(Ti,pv )rii" [C3] 

With only second order error, the first two terms on the right hand side cancel and hence, 

I (h~ - hi) ai 1o f Pv 
" Ti (s~--si)+ ~ 1  ~ Rv g~ ~ r,)-)" [C4] 

Now consider the coefficient of Ji in [62]. According to isothermal classical nucleation theory, 
droplets of critical radii are nucleated at a temperature equal to that of the gas-phase, i.e. Ti = T. 
Using [18]-[20] and [24] as before, 
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For a droplet of critical radius, pv(T, pv)=/~i(T, Pi) and hence h , -  Tsv = h b i -  TSbi. Thus, 

[ 1 4~r~a~ m, (hv - hi) (s. - si) - [C6] 
3T 


